248 research outputs found

    Márgenes de encuentro: Bilbao y el Euskara. Aplicación sociolingüística de la territorialidad

    Get PDF
    Reseña bibliográfica de la obra "Márgenes de encuentro: Bilbao y el Euskara. Aplicación sociolingüística de la territorialidad" de José María Sánches Carrión (Txepetx) en la que entre otros temas analiza la situación y la salud del euskera en general y, particularmente, en Bilbao

    Algebraic theory for the clique operator

    Get PDF
    In this text we attempt to unify many results about the K operator based on a new theory involving graphs, families and operators. We are able to build an "operator algebra" that helps to unify and automate arguments. In addition, we relate well-known properties, such as the Helly property, to the families and the operators. As a result, we deduce many classic results in clique graph theory from the basic fact that CS = I for conformal, reduced families. This includes Hamelink's construction, Roberts and Spencer theorem, and Bandelt and Prisner's partial characterization of clique-fixed classes [2]. Furthermore, we show the power of our approach proving general results that lead to polynomial recognition of certain graph classes.Facultad de Ciencias Exacta

    Recognizing clique graphs of directed edge path graphs

    Get PDF
    Directed edge path graphs are the intersection graphs of directed paths in a directed tree, viewed as sets of edges. They were studied by Monma and Wei (J. Comb. Theory B 41 (1986) 141-181) who also gave a polynomial time recognition algorithm. In this work, we show that the clique graphs of these graphs are exactly the two sections of the same kind of path families, and give a polynomial time recognition algorithm for them.Facultad de Ciencias Exacta

    On rooted directed path graphs

    Get PDF
    An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple. Two non adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. Cameron, Ho`ang, and L´evˆeque [DIMAP Workshop on Algorithmic Graph Theory, 67–74, Electron. Notes Discrete Math., 32, Elsevier, 2009] proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. Special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs, which are the intersection graphs of directed paths in a rooted directed tree. In this work we define other special connections; these special connections along with the ones defined by Cameron, Ho`ang, and L´evˆeque are nine in total, and we prove that every one forces T to be completely directed in one direction between these vertices. Also, we give a characterization of rooted directed path graphs whose rooted models cannot be rooted on a bold maximal clique. As a by-product of our result, we build new forbidden induced subgraphs for rooted directed path graphs.Facultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnica

    End simplicial vertices in path graphs

    Get PDF
    A graph is a path graph if there is a tree, called UV-model, whose vertices are the maximal cliques of the graph and for each vertex x of the graph the set of maximal cliques that contains it induces a path in the tree. A graph is an interval graph if there is a UV-model that is a path, called an interval model. Gimbel [3] characterized those vertices in interval graphs for which there is some interval model where the interval corresponding to those vertices is an end interval. In this work, we give a characterization of those simplicial vertices x in path graphs for which there is some t/V-model where the maximal clique containing x is a leaf in this UV-model.Facultad de Ciencias Exacta

    On rooted directed path graphs

    Get PDF
    An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple. Two non adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. Cameron, Ho`ang, and L´evˆeque [DIMAP Workshop on Algorithmic Graph Theory, 67–74, Electron. Notes Discrete Math., 32, Elsevier, 2009] proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. Special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs, which are the intersection graphs of directed paths in a rooted directed tree. In this work we define other special connections; these special connections along with the ones defined by Cameron, Ho`ang, and L´evˆeque are nine in total, and we prove that every one forces T to be completely directed in one direction between these vertices. Also, we give a characterization of rooted directed path graphs whose rooted models cannot be rooted on a bold maximal clique. As a by-product of our result, we build new forbidden induced subgraphs for rooted directed path graphs.Facultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnica

    Finding intersection models: From chordal to Helly circular-arc graphs

    Get PDF
    Every chordal graph G admits a representation as the intersection graph of a family of subtrees of a tree. A classic way of finding such an intersection model is to look for a maximum spanning tree of the valuated clique graph of G. Similar techniques have been applied to find intersection models of chordal graph subclasses as interval graphs and path graphs. In this work, we extend those methods to be applied beyond chordal graphs: we prove that a graph G can be represented as the intersection of a Helly separating family of graphs belonging to a given class if and only if there exists a spanning subgraph of the clique graph of G satisfying a particular condition. Moreover, such a spanning subgraph is characterized by its weight in the valuated clique graph of G. The specific case of Helly circular-arc graphs is treated. We show that the canonical intersection models of those graphs correspond to the maximum spanning cycles of the valuated clique graph.Facultad de Ciencias Exacta

    Finding intersection models: From chordal to Helly circular-arc graphs

    Get PDF
    Every chordal graph G admits a representation as the intersection graph of a family of subtrees of a tree. A classic way of finding such an intersection model is to look for a maximum spanning tree of the valuated clique graph of G. Similar techniques have been applied to find intersection models of chordal graph subclasses as interval graphs and path graphs. In this work, we extend those methods to be applied beyond chordal graphs: we prove that a graph G can be represented as the intersection of a Helly separating family of graphs belonging to a given class if and only if there exists a spanning subgraph of the clique graph of G satisfying a particular condition. Moreover, such a spanning subgraph is characterized by its weight in the valuated clique graph of G. The specific case of Helly circular-arc graphs is treated. We show that the canonical intersection models of those graphs correspond to the maximum spanning cycles of the valuated clique graph.Facultad de Ciencias Exacta

    On minimal vertex separators of dually chordal graphs: properties and characterizations

    Get PDF
    Many works related to dually chordal graphs, their cliques and neighborhoods were published by Brandstädt et al. (1998) and Gutierrez (1996). We will undertake a similar study by considering minimal vertex separators and their properties instead. We find a necessary and sufficient condition for every minimal vertex separator to be contained in the closed neighborhood of a vertex and two major characterizations of dually chordal graphs are proved. The first states that a graph is dually chordal if and only if it possesses a spanning tree such that every minimal vertex separator induces a subtree. The second says that a graph is dually chordal if and only if the family of minimal vertex separators is Helly, its intersection graph is chordal and each of its members induces a connected subgraph. We also found adaptations for them, requiring just O(|E(G)|) minimal vertex separators if they are conveniently chosen. We obtain at the end a proof of a known characterization of the class of hereditary dually chordal graphs that relies on the properties of minimal vertex separators.Facultad de Ciencias Exacta

    Determining possible sets of leaves for spanning trees of dually chordal graphs

    Get PDF
    It will be proved that the problem of determining whether a set of vertices of a dually chordal graphs is the set of leaves of a tree compatible with it can be solved in polynomial time by establishing a connection with finding clique trees of chordal graphs with minimum number of leaves.Facultad de Ciencias Exacta
    • …
    corecore